Polyclonal KPC-3-producing Enterobacteriaceae in Portugal

V. Manageiro¹, E. Ferreira¹, D. Louro¹, M. Caniça¹ on behalf of the Antimicrobial Resistance Surveillance Program in Portugal (ARSIP)

¹ National Reference Laboratory of Antimicrobial Resistances, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal

Introduction: The emergence and rapid dissemination of carbapenemase (CARB)-producing Enterobacteriaceae has become an important therapeutic and infection control problem in Europe. In Portugal, according to the European Antimicrobial Resistance Surveillance Network (EARS-Net) surveillance study, there was an increase in carbapenem nonsusceptibility of K. pneumoniae isolates from 0.72% in 2008 to 1.58% in 2010. However, little is known on CARB-producing Enterobacteriaceae. KPC enzymes have not been described in Portuguese clinical Enterobacteriaceae isolates, but a KPC-2-producing E. coli isolate was recently found in the aquatic environment.

Methods: In this study, we report 6 KPC-3-producing Enterobacteriaceae isolates (5 K. pneumoniae and 1 Enterobacter cloacae), collected between March 2010 and December 2011 and sent to the NIH-Lisbon for carbapenem susceptibility confirmation. Antimicrobial susceptibility of clinical isolates was performed by disk diffusion method. PCR and sequencing were applied to detect and identify CARB-encoding genes as well as bla_SSHV and bla_PMA (plasmid-mediated AmpC β-lactamases); the respective genetic environment was revealed by sequencing using PCR mapping, after standard cloning experiments. Direct transfer of the carbapenem resistance phenotype was attempted by mating-out assays. Antibiotics susceptibility (MIC) of transconjugants and respective isolates were tested by microdilution and the results were interpreted according to EUCAST breakpoints. The plasmids obtained for all isolates were characterized by PCR-based replicon typing (PBRT). Clonal relatedness of the 5 K. pneumoniae isolates was investigated by multilocus sequence typing (MLST), using the protocol developed by the Institute Pasteur (www.pasteur.fr/mlst/Kpneumoniae.html).

Results: The majority of isolates were collected from the urine (42.8%) of elderly (≥65 years old) male patients (85.7%), admitted at four geographic distant Portuguese hospitals. The KPC-3 producers displayed a MDR phenotype with consistent susceptibility only to colistin and tigecycline. All isolates demonstrated a positive combined disk test with meropenem and meropenem-boronic acid, indicative of serine CARB production. Overall, the bla_KPC-3 gene was confirmed in all isolates, alone or in combination with other bla genes, namely bla_SHV-26, an inhibitor-resistant SHV; bla_CTX-M-15, the most frequent ESBL-type found worldwide; and the bla_SHV-164 (HE981194), here firstly described. No co-expression of KPC-3 with other CARB or PMAβ was detected. Recombinant plasmids with a 4,110 bp insert conferring resistance to carbapenems were obtained after cloning experiments. Genetic mapping around the bla_KPC-3 gene identified the Tn3-like Tn4401 transposon. In this study, we detected, in all isolates, the 68-bp deletion isoform, which ends upstream of the -35 region of the promoter. In our study, the majority of the bla_KPC-3-harboring plasmids appeared to be nonconjugative, since only one conjugant [EcK12 C600 (INSRA14159-KPC-3)] and one transformant [EcDH5α (INSRA12267-KPC-3)] were obtained. In general, both transformants had antibiotic resistance profiles similar to those of their parental clinical isolates. All but two KPC-3-producing isolates were positively typed by the PBRT method: IncF_repB + IncFIIa (n=1), IncF_repB + IncP (n=1) and IncF_repB (n=1). Both conjugant and transformant had only the IncF_repB, suggesting that this Inc group is associated with KPC-3-harbouring plasmids. The KPC-3-producing K. pneumoniae were from distinct sequence types, namely ST14, which have been associated with NDM-producing K. pneumoniae, ST34, ST59, ST416 and the novel ST960.

Conclusion: This study provides new data regarding the molecular epidemiology of CARB-producing Enterobacteriaceae in Portugal, which includes KPC-3-harbouring IncF_repB plasmids that are shared by polyclonal K. pneumoniae and E. cloacae clinical strains. Overall, our results emphasize the need of a concerted action to manage carbapenem use.

Keywords Tn4401-KPC-3; IncF_repB